Puma and Jaguar were designed for deep-seafloor operation under the Arctic icecaps. Fully assembled, the vehicles are about 2 meters long, 1.5 meters tall, and weigh about 250 kilograms in air. The vehicles are driven by three thrusters capable of driving the vehicle forward at about 35 centimeters per second. Both vehicles are rated to a maximum operational depth of 6000 meters — this allows us to reach the bottom of more than 99% of the world’s ocean. Both vehicles are powered by six kilowatt-hours of lithium-ion batteries, approximately equivalent to 100 laptop batteries, and can stay submerged for up to 24 hours.
While Puma and Jaguar are outfitted with identical thrusters and navigation sensors, they differ in their science payloads and in how they are used. Both vehicles carry standard oceanographic sensors for measuring water temperature, conductivity, pressure, and salinity, as well as navigation sensors, including a 3-axis north seeking fiber optic gyroscope, doppler velocity log, and depth sensor. Both vehicles also carry a WHOI MicroModem. In addition, the AUVs carry specialized sensors used for finding hydrothermal plumes, including an “Eh” sensor developed by Dr. Ko-ichi Nakamura of AIST for measuring oxidation-reduction potential in the water.
Jaguar carries sensors suited to sea floor surveys, including a downward-facing optical camera and strobe, an imaging sonar, and a magnetometer. The camera takes one picture every three seconds while Jaguar is near the sea floor; this rate is fixed by the amount of time it takes for the strobe to recharge. We are currently examining the use of arrays of LEDs for underwater lighting, which will allow for higher frame rates at the cost of higher power consumption.