Silicon Swimmers

July 3, 2012 via - VaCAS

Taking advantage of thousands of years of evolution, researchers are working to perfect new underwater robots modeled after fish. Michael Philen, assistant professor of Aerospace and Ocean Engineering, assembled a research team that spans disciplines and universities to study the behavior and physiology of fish. With a $1.9 million grant from the National Science Foundation, the artificial fish they are developing could lead to underwater robots that can move far more efficiently than current propeller technology.

Fish can swim with a hydrodynamic efficiency of up to 90 percent, while modern propeller technology can be much less than this, according to Philen. Fish sense their environment and take advantage of this data to precisely adjust their complex muscular system and fins for maximum efficiency. Philen explains that “the hair-like neuromasts along a fish’s body allows a fish to sense the smallest changes in the fluid. This allows a fish to adjust its swimming to the water conditions and perform complicated maneuvers, such as schooling and escape.”

In order to replicate nature, such a sophisticated robotic fish requires novel sensors, actuators, materials, and control algorithms. “We want to use what we’ve learned from fish to develop artificial muscles and sensors for distributed sensing and actuation,” says Philen. The sensors will supply the robot with the data it needs, and the artificial muscles will allow it to act on this data.

References: None
Author:Philen M
Citation:Philen M, Silicon Swimmers, VaCAS, July 3 2012
Date Published:July 3, 2012
External Link:
Download PDF