Publications

Organizations

Publications

This page is meant to be a storehouse for publications that reflect activities of interest to AUVAC and its members. If you have publications that should be added to this list please let us know and we will include them.


Unmanned Systems Integrated Roadmap FY2013-2038

December 23, 2013 via - US Department of Defense

Unmanned systems continue to deliver new and enhanced battlefield capabilities to the warfighter. While the demand for unmanned systems continues unabated today, a number of factors will influence unmanned program development in the future. Three primary forces are driving the Department of Defense’s (DoD) approach in planning for and developing unmanned systems.

1. Combat operations in Southwest Asia have demonstrated the military utility of unmanned systems on today’s battlefields and have resulted in the expeditious integration of unmanned technologies into the joint force structure. However, the systems and technologies currently fielded to fulfill today’s urgent operational needs must be further
expanded (as described in this Roadmap) and appropriately integrated into Military Department programs of record (POR) to achieve the levels of effectiveness, efficiency, affordability, commonality, interoperability, integration, and other key parameters needed to meet future operational requirements.

2. Downward economic forces will continue to constrain Military Department budgets for the foreseeable future. Achieving affordable and cost-effective technical solutions is imperative in this fiscally constrained environment.

3. The changing national security environment poses unique challenges. A strategic shift in national security to the Asia-Pacific Theater presents different operational considerations based on environment and potential adversary capabilities that may require unmanned systems to operate in anti-access/area denial (A2/AD) areas where freedom to operate is contested. Similarly, any reallocation of unmanned assets to support other combatant commanders (CCDRs) entails its own set of unique challenges, which will likely require unmanned systems to operate in more complex environments involving weather, terrain, distance, and airspace while necessitating extensive coordination with allies and host nations.

The combination of these primary forces requires further innovative technical solutions that are effective yet affordable for program development. The purpose of this Roadmap is to articulate a vision and strategy for the continued development, production, test, training, operation, and sustainment of unmanned systems technology across DoD. This “Unmanned Systems Integrated Roadmap” establishes a technological vision for the next 25 years and outlines actions and technologies for DoD and industry to pursue to intelligently and affordably align with this vision.

View Full Article

All About Batteries

December 4, 2013 via - EE Times

There are lots of factors to consider when choosing the battery technology for a particular application. In addition to relative size, weight, and cost (from cheap to expensive to "if you have to ask, you can't afford it"), the main considerations and factors I plan on covering in this series are as follows:

Environment (operating and storage): Temperature, air pressure, altitude, mechanical strain, vibration, mounting position, radiation hardening, corrosive attack, packaging/shape, storage or shelf life, disposal, waste products produced and outgassing, consumables required, safety, and materials/RoHS

Application: Types (including primary, secondary, and smart), technology, chemistries, efficiency and loss, charge/discharge cycle count and rates, depth of discharge, service life, memory effect, charging techniques, capacitor/battery hybrid, use cases, capacity, density (energy and weight), protection circuitry, measuring and gas gauge, quality, reliability, and recharge and run times

View Full Article

Hovering Type AUV “Tuna-Sand” and Its Surveys on Smith Caldera in Izu-Ogasawara Ocean Area

September 25, 2013 via -

Abstract—During the operation of and AUV in the ocean, it is necessary to monitor the vehicles position and the status in real time to prevent accidents that may occur abrupt changes in oceanic condition. Therefore a support ship should follow and monitor the AUV during survey. The ship operation costs are high and it is inefficient use if only one AUV dives during a survey. We developed a new survey method for multiple AUVs to make effective use of ship time. In our survey method, two cruising AUVs (AE2000a and AE2000f) pass through approximately the same route and observe the seafloor at a high altitude. One hovering type AUV (Tuna-Sand) navigates and takes pictures of seafloor at a low altitude. The ship follows the two cruising AUVs and sends the command by acoustic communication as necessary. Then an SSBL device on a moored buoy localizes Tuna-Sand and sends vehicle’s position and status
to the ship by satellite communications. To avoid sound wave interference, sufficient time gap is added between signal
transmissions and the GPS time is used for synchronization. The Tuna-Sand AUV observed on Smith caldera in Izu-Ogasawara ocean area in two dives using our survey method. In first dive, the vehicle surveyed for about 2 hours and took 170 pictures of the seafloor. In second dive, we succeeded that AE2000a, AE2000f and Tuna-Sand dived and surveyed on the caldera at same time. The results obtained during the survey are described in detail in this paper.

View Full Article